From 1 - 10 / 90
  • Geoscience Australia houses one of the world's largest collections of petroleum data. Much of this data is non-confidential and available to the petroleum industry, research organisations and the public. The collection includes well data submitted by industry under legislative requirements as well as data collected by research projects and marine surveys undertaken by Geoscience Australia or other government agencies or institutions. The collections comprise of digital data such as well completion reports, well logs, destructive analysis reports, vertical seismic profiles, core photography, special studies and also hard-copy well log data and graphs submitted during the pre-digital era. <b>Value: </b> information related to the subsurface that have the potential to support geological investigations and assessment of a variety of resources. <b>This data can be discovered through the National Offshore Petroleum Information Management System (NOPIMS) - http://www.ga.gov.au/nopims</b>

  • The Geoscience Australia Rock Properties database stores the result measurements of scalar and vector petrophysical properties of rock and regolith specimens and hydrogeological data. Oracle database and Open Geospatial Consortium (OGC) web services. Links to Samples, Field Sites, Boreholes. <b>Value:</b> Essential for relating geophysical measurements to geology and hydrogeology and thereby constraining geological, geophysical and groundwater models of the Earth <b>Scope:</b> Data are sourced from all states and territories of Australia <b>To view the entire collection click on the keyword "HVC_144494" in the below Keyword listing</b>

  • The Australian Marine Spatial Information System (AMSIS) is a web based interactive mapping and decision support system that improves access to integrated government and non-government information in the Australian Marine Jurisdiction. AMSIS is a decision support tool maintained by Geoscience Australia that brings together information required by Government, industry and private individuals with an interest in the regulation, geography and uses of Australia’s Marine Jurisdiction. AMSIS provides a mechanism to visualise competing interests in the marine space; using curated data from across Government, State, and academia to expose competing use, and enable discussion with the multi-sectoral users to better plan and manage the Jurisdiction. AMSIS contains many layers of information displayed in themes of Australia’s Maritime Boundaries, Petroleum, Fisheries, Environment, Native Title and general Regulation. Geoscience Australia is working with other Australian Government agencies, Industry and Academia to add additional information that will improve the functionality of AMSIS. All information provided in AMSIS is the best available at the time of publication. Although the best efforts have been made to ensure the information is current and accurate, the information is not warranted to be correct. Users should investigate the metadata records to understand the limitations on any information layer, and consult with the regulating agency before making any decision.

  • Collection of field notebooks recording mainly geological observations made by staff of Geoscience Australia (GA) and its predecessors, Bureau of Mineral Resources (BMR) and Australian Geological Survey Organisation (AGSO), while conducting fieldwork between 1930 and 2010. The notebooks are currently being digitised. <b>Value: </b>Historic and scientific significance. Many sites visited are remote and have rarely been revisited. Some notebooks also record observations on fauna and flora. <b>Scope: </b>Geographical scope is largely Australia, pre- and post-Independence Papua New Guinea (PNG), and the Australian Antarctic Territory, but other countries and territories are represented. <b>To view the entire collection click on the keyword "HVC_144614" in the below Keyword listing</b>

  • Analysis Ready Data (ARD) takes medium resolution satellite imagery captured over the Australian continent and corrects for inconsistencies across land and coastal fringes. The result is accurate and standardised surface reflectance data, which is instrumental in identifying and quantifying environmental change. This product is a single, cohesive ARD package, which allows you to analyse surface reflectance data as is, without the need to apply additional corrections. ARD consists of sub products, including : 1) NBAR Surface Reflectance which produces standardised optical surface reflectance data using robust physical models which correct for variations and inconsistencies in image radiance values. Corrections are performed using Nadir corrected Bi-directional reflectance distribution function Adjusted Reflectance (NBAR). 2) NBART Surface Reflectance which performs the same function as NBAR Surface Reflectance, but also applies terrain illumination correction. 3) OA Observation Attributes product which provides accurate and reliable contextual information about the data. This ‘data provenance’ provides a chain of information which allows the data to be replicated or utilised by derivative applications. It takes a number of different forms, including satellite, solar and surface geometry and classification attribution labels. ARD enables generation of Derivative Data and information products that represent biophysical parameters, either summarised as statistics, or as observations, which underpin an understanding of environmental dynamics. The development of derivative products to monitor land, inland waterways and coastal features, such as: - urban growth - coastal habitats - mining activities - agricultural activity (e.g. pastoral, irrigated cropping, rain-fed cropping) - water extent Derivative products include: - Water Observations from Space (WOfS) - National Intertidal Digital Elevation Model (NIDEM) - Fractional Cover (FC) - Geomedian ARD and Derivative products are reproduced through a period collection upgrade process for each sensor platform. This process applied improvements to the algorithms and techniques and benefits from improvements applied to the baseline data that feeds into the ARD production processes. <b>Value: </b>These data are used to understand distributions of and changes in surface character, environmental systems, land use. <b>Scope: </b>Australian mainland and some part of adjacent nations. Access data via the DEA web page - <a href="https://www.dea.ga.gov.au/products/baseline-data">https://www.dea.ga.gov.au/products/baseline-data</a> <b>To view the entire collection click on the keyword "HVC_144688" in the below Keyword listing</b>

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • Geoscience Australia (GA) has created a unique collection of 3D structural and geological models and model inputs for Australia and its near shore regions. Currently the collection contains a variety of 3D volumetric models and surfaces that were produced for specific projects at regional to continental scale. The approximately 40 regional scale models in the collection cover roughly 1/3 of the Australian continent. The models capture 3D stratigraphy and architecture, including the depth to bedrock and the locations of different major rock units, faults and geological structures. The geologic models represent the integration of geophysical surveys, seismic surveys, borehole data, field geology, and geochemical data, the majority of which will now be available through this and other RDSI collections. In their current form, the 3D models provide a valuable input to simulations of geological processes. However, the plan over time is to use the HPC capability at NCI and the large storage volumes available to dynamically integrate the various models and geological, geochemical and geophysical derivative products to then create a unified 3D model for the entire continent. Separately and then cumulatively, these models will provide an important new basis for describing and understanding Australia's geologic evolution and resource wealth. Currently there are no international open standards for the development and storage of 3D geological models, which is why they are difficult to integrate or stitch into nationally integrated data sets. The lack of consistency of the models means that each has to be transformed into formats compatible with existing HP modelling and simulation software. It is hoped that through exposing these 3D geological models into a HP collaborative environment that this will foster and accelerate the development of international standards and tools necessary for the assimilation of 3D geological models into a variety of HP programs. <b> Note: This record has been superseded by eCat 144629:</b> - <a href="https://pid.geoscience.gov.au/dataset/ga/144629">https://pid.geoscience.gov.au/dataset/ga/144629</a>

  • Magnetotellurics (MT) is a passive geophysical method which uses natural time variations of the Earth's magnetic and electric fields to measure the electrical resistivity of the sub-surface. Electrical resistivity is a bulk property of a volume of Earth material and is associated with factors such as rock composition, porosity and permeability as well as temperature and pressure. The Magnetotelurics (MT) Data Collection includes datasets from The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) and regional-scale MT surveys across the Australian continent. These data were collected by Geoscience Australia in collaboration with the State and Territory Geological Surveys and other partners. <b>Value: </b>Magnetotelluric data to expand the geoscientific understanding of the earth’s lithospheric structure and provide new insights into Australia’s onshore energy and mineral potential. <b>Scope: </b>AusLAMP is being conducted over multiple years to create a national MT dataset and map lithospheric structure of the Australian continent. MT data have also been acquired for mapping crustal structure and resource potential at regional scale. These data provide valuable information for multi-disciplinary interpretations. To view the magnetotellurics data via the Geoscience Australia internet page click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/regional-mt-program">https://www.ga.gov.au/about/projects/resources/regional-mt-program</a> For further information about the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/auslamp">https://www.ga.gov.au/about/projects/resources/auslamp</a> <b>To view catalogue records associated with this collection, click on the keyword "HVC_144686" in the below Keyword listing</b>

  • Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The gravity data collection contains both onshore and offshore data acquired on geophysical surveys conducted by Commonwealth, State & NT Governments and the private sector. <b>Value: </b>Gravity used to infer (model) the presence and position of different rock types in the subsurface. Used in resource assessment <b>Scope: </b>Australia continent and some data from marine surveys in region <b>To view the entire collection click on the keyword "HVC_144634" in the below Keyword listing</b>

  • Data in the GEOCHEM database comprises inorganic geochemical analytical data and associated metadata. Geochemical data comprises concentration data (value, error, unit of measure) measured on a range of analytical instruments, for a range of elements of the periodic table. Associated metadata includes information on analytical techniques, analytical methodology, laboratory, analysts, date of analysis, detection limits, accuracy, and precision. The GEOCHEM database also records results for reference standards. Data is specifically for rocks, soils and other unconsolidated geological material and does not include oils, gases or water analyses. Geochemical data may be total rock (i.e., whole rock analysed) or for a variety of fractions of the total rock, e.g., various non-total acid digests, mineral separates, differing size fractions. It also includes quantitative to semi-quantitative data from field measurements, such as portable x-ray fluorescence (XRF). It does not include geochemical data for individual minerals. <b>Value: </b>Geochemical data underpins much geoscientific study, and is used directly to classify, characterise and understand geological material and its formation. It has direct relevance to understanding the formation of the earth, the continents, and the processes that create and shape the surface we live on. For example, this information is used within: both discovering and the understanding of mineral deposits we depend on; the nature, health and sustainability of the soils we live and farm on; as well as providing input into a range of potential geohazards. <b>Scope: </b>The collection includes data from over 60 years of Geoscience Australia (GA) and state/territory partner regional geological projects within Australia, as well as continental-scale and regional geochemical surveys like National Geochemical Survey of Australia (NGSA) and Northern Australia Geochemical Survey (NAGS) (Exploring for the Future- EFTF). It also includes data from other countries that GA has worked with, e.g., Papua New Guinea, Antarctica, Solomon Islands and New Zealand. <b>To view the entire collection click on the keyword "HVC_144627" in the below Keyword listing</b> Or explore the <b>Geoscience Australia portal - <a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a></b>