From 1 - 10 / 83
  • Geoscience Australia houses one of the world's largest collections of petroleum data. Much of this data is non-confidential and available to the petroleum industry, research organisations and the public. The collection includes well data submitted by industry under legislative requirements as well as data collected by research projects and marine surveys undertaken by Geoscience Australia or other government agencies or institutions. The collections comprise of digital data such as well completion reports, well logs, destructive analysis reports, vertical seismic profiles, core photography, special studies and also hard-copy well log data and graphs submitted during the pre-digital era. <b>Value: </b> information related to the subsurface that have the potential to support geological investigations and assessment of a variety of resources. <b>This data can be discovered through the National Offshore Petroleum Information Management System (NOPIMS) - http://www.ga.gov.au/nopims</b>

  • This is the collection level record for the N.H. (Doc) Fisher Geoscience Library's Australian geological field notebooks. Digitisation and transcription of these notebooks by a dedicated team of volunteers via the Australian Museum's DigiVol Citizen Science platform is ongoing (subject to annual funding). The Australian field notebooks contain the geological observations recorded by geologists of Geoscience Australia (GA) and its predecessors during fieldwork across the country from the 1930s until paper notebooks were replaced by electronic devices. The intention of this work is to make the content of these unique historical artefacts more widely accessible to researchers and the public. At present, access to the majority of the field notebooks is only available by visiting the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia in Canberra. However, individual records for the Australian notebooks can be found in the Library's online catalogue, at: <a href="https://geoscienceaustralia.intersearch.com.au">https://geoscienceaustralia.intersearch.com.au</a>.

  • Although the Bureau of Mineral Resources, Geology and Geophysics was created in 1946, it did not compile an annual report until 1971. The series continued under this title up to 1976, all but the last providing summaries of annual activities by broad sections (functions and organisation, field operations, laboratory studies, observatories, and so on). The 1976 Annual Report adopted a shorter format, a general outline of the role, objectives and programs of the Bureau being followed by a selection of short articles on the "more innovative and conclusive activities" of that year. This new format was retained in 1977 when a title change was made and the annual summaries became known as BMR Yearbooks.

  • Hydrochemistry data for Australian groundwater, including field and laboratory measurements of chemical parameters (electrical conductivity (EC), potential of hydrogen (pH), redox potential, and dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. <b>Value: </b>The chemical properties of groundwater are key parameters to understand groundwater systems and their functions. Groundwater chemistry information includes the ionic and isotopic composition of the water, representing the gases and solids that are dissolved in it. Hydrochemistry data is used to understand the source, flow, and interactions of groundwater samples with surface water and geological units, providing insight into aquifer characteristics. Hydrochemistry information is key to determining the quality of groundwater resources for societal, agricultural, industrial and environmental applications. Insights from hydrochemical analyses can be used to assess a groundwater resource, the impact of land use changes, irrigation and groundwater extraction on regional groundwater quality and quantity, assess prospective mineral exploration targets, and determine how groundwater interacts with surface water in streams and lakes. <b>Scope: </b>The database was inaugurated in 2016 with hydrochemical data collected over the Australian landmass by Geoscience Australia and its predecessors, and has expanded with regional and national data. It has been in the custodianship of the hydrochemists in Geoscience Australia’s Minerals, Energy and Groundwater Division and its predecessors. <b>To view the entire collection click on the keyword "HVC_144638" in the below Keyword listing</b> Explore the <b>Geoscience Australia portal - https://portal.ga.gov.au/</b>

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on data and derived data from the European Commission's Copernicus Programme. Example products include: Sentinel-1-CSAR-SLC, Sentinel-2-MSI-L1C, Sentinel-3-OLCI etc.

  • This is the collection level record for the N.H. (Doc) Fisher Geoscience Library's collection of Antarctic geological field notebooks. Digitised copies of the notebooks were transcribed and validated in 2016-2017 by a dedicated team of volunteers from around Australia via the Australian Museum's DigiVol Citizen Science transcription platform. This project was managed by Information Services Librarian Jane Black with support from Geoscience Australia's Antarctic Geoscience team. The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • Digital Elevation Model data record the terrain height variations from the processed point-located data recorded on an airborne geophysical survey. The aircraft altimeter data records the height of the aircraft above the ground and the aircraft GPS records the height of the aircraft above the ellipsoid. Subtracting the two values enables the height of the terrain beneath the aircraft relative to the ellipsoid to be calculated. This ellipsoidal terrain height is corrected for the variation between the ellipsoid and the geoid (the n-value correction) to produce terrain heights relative to sea level.

  • This collection includes Global Navigation Satellite System (GNSS) observations from long-term continuous or semi continuous reference stations at multiple locations across Australia and its external territories, including the Australian Antarctic Territory. <b>Value:</b> The datasets within this collection are provided on an openly accessible basis to support a myriad of scientific and societal positioning applications in Australia. These include the development and maintenance of the Australian Geospatial Reference System (AGRS); the densification of the International Terrestrial Reference Frame (ITRF); crustal deformation studies; atmospheric studies; and the delivery of precise positioning services to Australian businesses. <b>Scope: </b> Data from reference stations across Australia and its external territories, including the Australian Antarctica Territory. <b>Access: </b> To access the datasets and query station information visit the <a href="https://gnss.ga.gov.au./">Global Navigation Satellite System Data Centre</a>