From 1 - 10 / 367
  • The Neoproterozoic to Paleozoic Thomson Orogen is a major component of the Tasmanides of eastern Australia that extends through large portions of central and southwest Queensland and northwest New South Wales. Much of the Thomson Orogen is buried under younger sedimentary basins (some up to several kilometres thick) and regolith cover, making it one of the most poorly understood elements of Australia’s geology. As a result, the mineral potential of the region is also poorly defined. The Southern Thomson Project (the Project) is a collaborative investigation between the Commonwealth of Australia (Geoscience Australia – GA) and its partners the State of New South Wales (Department of Trade and Investment, Geological Survey of New South Wales – GSNSW) and the State of Queensland (Department of Natural Resources and Mines, Geological Survey of Queensland – GSQ). The Project aims to better understand the geological character and mineral potential of the southern Thomson Orogen region, focusing on the border between New South Wales and Queensland, by acquiring and interpreting multi-disciplinary geophysical, geochemical and geological data. The primary intended impact of this work is to provide the mineral exploration industry with pre-competitive data and knowledge that reduces risk and encourages mineral exploration in the region.

  • This is the collection level record for the N.H. (Doc) Fisher Geoscience Library's Australian geological field notebooks. Digitisation and transcription of these notebooks by a dedicated team of volunteers via the Australian Museum's DigiVol Citizen Science platform is ongoing (subject to annual funding). The Australian field notebooks contain the geological observations recorded by geologists of Geoscience Australia (GA) and its predecessors during fieldwork across the country from the 1930s until paper notebooks were replaced by electronic devices. The intention of this work is to make the content of these unique historical artefacts more widely accessible to researchers and the public. At present, access to the majority of the field notebooks is only available by visiting the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia in Canberra. However, individual records for the Australian notebooks can be found in the Library's online catalogue, at: <a href="https://geoscienceaustralia.intersearch.com.au">https://geoscienceaustralia.intersearch.com.au</a>.

  • The Houtman Sub basin 2D seismic survey web service display seven seamless bathymetry grids of 15m (shallow water) and 25m (deep water) resolution.

  • In 1911 a geological survey of the Canberra Federal City site was completed with a map. The rocks composing the site are somewhat contorted and folded sedimentary series of sandstones and quartzites, shales, slates, limestones, and volcanic tuffs, and this has subsequently been intruded by an igneous series, consisting principally of quartz-phorphyries and quartz-felsites.

  • Australia - Offshore Minerals Act 1994 - Mineral Blocks - epoch 2014a. This service displays the Australian Mineral Blocks - Aligned with the current Australian Maritime Boundary Dataset. Refer to the metadata of the geodatabase for a detailed abstract relating to the data.

  • Small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) are used to directly detect the processes of hydrocarbon generation in the 10 nm to 10 μm size pores in carbonate and siliciclastic rocks which contain no land-plant material suitable for conventional maturity determination by vitrinite reflectance. The method takes advantage of the pore-size-specific variation of neutron scattering contrast between the solid rock matrix and pore-space content with depth, which is caused by thermal maturation of organic matter through the oil and gas generation windows. SANS and USANS measurements were performed on bedding plane-orientated core slices, extracted from a series of 10 to 12 depth intervals for three wells, CKAD0001, MacIntyre 1 and Baldwin 1 in the southern Georgina Basin, central Australia. The depth intervals, intersecting the organic-rich basal ‘hot’ shales of the middle Cambrian Arthur Creek Formation, were selected based on Rock-Eval pyrolysis data. SANS and USANS results indicate that oil generation has occurred in the past in nano-sized pores in rocks that are now at depths of around 538.4 m in CKAD0001 and 799.3 m in MacIntyre 1. Furthermore, in the CKAD0001 well, the oil-wet pores extend into the larger pore-size range (at least up to 10 μm) due to the efficient expulsion of oil. At around 880 m in Baldwin 1, the influence of pyrobitumen reverts pore space from gas wet to oil wet. These hydrocarbons have remained in situ since the Devonian when the Neoproterozoic to Paleozoic section was exhumed in the Alice Springs Orogeny and subsequently eroded, preserving only remnants of the once extensive basin sediments.

  • The Intertidal Extents Model (ITEM) product is a national dataset of the exposed intertidal zone; the land between the observed highest and lowest tide. ITEM provides the extent and topography of the intertidal zone of Australia's coastline (excluding off-shore Territories). This information was collated using observations in the Landsat archive since 1986. ITEM can be a valuable complimentary dataset to both onshore LiDAR survey data and coarser offshore bathymetry data, enabling a more realistic representation of the land and ocean interface.

  • The Browse Basin is located offshore on Australia’s North West Shelf and is a proven hydrocarbon province hosting gas with associated condensate. Oil reserves in the area are small with most in-place oil likely the result of hydrocarbon fluids experiencing pressures less than their saturation pressure resulting in dual phase fluids, coupled with secondary alteration processes and gas leakage. This study reviews the distribution, quality and maturity of source rocks and fluid characteristics in the Browse Basin. All publicly-available Total Organic Carbon (TOC) and Rock-Eval pyrolysis data were compiled and quality checked to determine multiple, viable source rock units. Jurassic and Cretaceous source rock distributions and net thickness were studied using integrated seismic and well log lithofacies mapping, combined with organic geochemistry data. Source rock transformation ratio and generation potential were investigated using a regional pseudo-3D petroleum systems model constructed from new seismic interpretations and calibrated using temperature and maturity data from 34 wells. Results show that the Jurassic Plover Formation (J10-J20 supersequences) coals and carbonaceous shales are effective, primarily gas-prone source rocks which may have some liquid potential when the generated gas migrates into shallow reservoirs at reduced pressures. Additional sources of hydrocarbons include shales in the Upper Jurassic lower Vulcan Formation (J40 supersequence), Lower Cretaceous upper Vulcan Formation (K10 supersequence) and Echuca Shoals Formation (K20-K30 supersequences). However, these are likely to have only expelled hydrocarbons locally in areas of optimal organic-richness and maturity. Key uncertainties include TOC and HI variability due to lack of well penetration in the depocentres. The molecular composition of the fluids were compiled and quality checked and used to investigate the relationship between the saturation pressure and condensate-gas ratio (CGR). By combining the bulk properties and molecular and isotopic compositions of the fluids with the geochemical compositions of the source rocks in a petroleum systems model, four Mesozoic petroleum systems have been identified and mapped to help understand the source rock potential and fluid characters for the Browse Basin.

  • The service includes an outline of the Australian shoreline. The information was derived from the Geodata 3 Topographic 250K 2007 data, with a nominal scale of 1:250,000. It is a cached service with a Web Mercator Projection.

  • Cycle slip detection and repair are essential quality control steps in recovering the integer ambiguities when loss of tracking signals in GNSS precise positioning occurs. In this contribution, we present an improvement to the previous algorithm for reliable real-time cycle slip detection and repair of the Australian Analysis Centre Software (ACS) Pre-processing and Data Editing (PDE) function. First, the traditionally used algorithm based on the quality control theory is used to detect and repair the cycle slips. Then if the cycle slips are detected but not reliably repaired, the information of subsequent epochs are used together to strengthen the model and achieve a higher cycle slip repair success-rate. With such an enhancement, the model becomes more robust to accommodate the measurement noise and the ionosphere disturbance.