From 1 - 10 / 1952
  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000417 degrees (approximately 40m) and shows uranium element concentration of the Murchison 1 (Murgoo), WA, 2011 survey. The data used to produce this grid was acquired in 2011 by the WA Government, and consisted of 131105 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000833 degrees (approximately 80m) and shows uranium element concentration of the Devil's Creek, WA, 1999 survey. The data used to produce this grid was acquired in 1999 by the WA Government, and consisted of UNKNOWN line-kilometres of data at 300m line spacing and 70m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.004 degrees (approximately 440m) and shows uranium element concentration of the Katherine-Mt Evelyn, NT, 1975/76 survey. The data used to produce this grid was acquired in 1976 by the NT Government, and consisted of 21893 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.000833 degrees (approximately 90m) and shows potassium element concentration of the Mount Isa West, Qld, 2006 survey. The data used to produce this grid was acquired in 2006 by the Qld Government, and consisted of 63550 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.000417 degrees (approximately 40m). The data used to produce this grid was acquired in 2013 by the WA Government, and consisted of 122751 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.001 degrees (approximately 100m) and shows thorium element concentration of the SA Exploration Initiative, Area P1, 1993 survey. The data used to produce this grid was acquired in 1993 by the SA Government, and consisted of 7000 line-kilometres of data at 400m line spacing and 160m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004 degrees (approximately 430m). The data used to produce this grid was acquired in 1984 by the WA Government, and consisted of 40665 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The National Geochemical Survey of Australia (NGSA) provides the first national coverage of multi-element chemistry at a continental scale. The NGSA data is an important complement to other national-scale geological and geophysical datasets, particularly the Radiometric Map of Australia. The Radiometric Map of Australia shows potassium (K) measured directly from gamma-rays emitted when 40K decays to argon (40Ar), whereas thorium (Th) and uranium (U) do not emit gamma-rays. Instead, their abundances are inferred indirectly by measuring gamma-ray emissions associated with parent radionuclides (thallium-208 for Th, and bismuth-214 for U) within their radioactive decay chains. Airborne-derived grids provide a continuous prediction of these radioelements across the Australian landscape. In contrast, the NGSA data provide a series of precise single point geochemical measurements of surface (0-10 cm) and near-surface (~60-80 cm depth) unconsolidated catchment outlet sediments.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.000417 degrees (approximately 40m). The data used to produce this grid was acquired in 1998 by the WA Government, and consisted of 46977, 31200, 39698 line-kilometres of data at 200, 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.000767 degrees (approximately 80m) and shows potassium element concentration of the NSW DMR, Discovery 2000, Area V, Northern Moree, NSW survey. The data used to produce this grid was acquired in 2001 by the NSW Government, and consisted of 28000 line-kilometres of data at 400m line spacing and 80m terrain clearance.