From 1 - 10 / 34
  • Petroleum geochemical datasets and information are essential to government for evidence-based decision making on natural resources, and to the petroleum industry for de-risking exploration. Geoscience Australia’s newly built Data Discovery Portal (https://portal.ga.gov.au/) enables digital discoverability and accessibility to key petroleum geochemical datasets. The portal’s web map services and web feature services allow download and visualisation of geochemical data for source rocks and petroleum fluids, and deliver a petroleum systems framework for northern Australian basins. The Petroleum Source Rock Analytics Tool enables interrogation of source rock data within boreholes and field sites, and facilitates correlation of these elements of the petroleum system within and between basins. The Petroleum Systems Summary Assessment Tool assists the user to search and query components of the petroleum system(s) identified within a basin. The portal functionality includes customised data searches, and visualisation of data via interactive maps, graphs and geoscientific tools. Integration of the petroleum systems framework with the supporting geochemical data enables the Data Discovery Portal to unlock the value of these datasets by affording the user a one-stop access to interrogate the data. This allows greater efficiency and performance in evaluating the petroleum prospectivity of Australia’s sedimentary basins, facilitating and accelerating decision making around exploration investment to ensure Australia’s future resource wealth <b>Citation:</b> Edwards, D.S., MacFarlane, S.K., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S., Ray, J. and Raymond, O., 2020. Developing thermochemical models of Australia’s lithosphere. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Northern Australia. The Paleo- to Mesoproterozoic sedimentary and volcanic sequences of the Mount Isa–McArthur Basin region of Northern Territory and Queensland are host to a range of world class mineral deposits (Hutton et al., 2012) and include the basin-hosted base metal deposits of the North Australian Zinc Belt, the world’s richest belt of zinc deposits (Huston et al., 2006; Large et al., 2005). The region demonstrably has potential for additional world class mineral systems (Hutton et al. 2012), as well as potential to host shale gas plays (Gorton & Troup, 2018). An improved understanding of the chemistry of the host sedimentary units, including associated volcanic and intrusive rocks (potential metal source rocks) within these regions is therefore an important requisite to further understand the resource potential of the region. To assist in this we have undertaken a multi-year campaign (2016-2019) of regional geochemical sampling of geological units in the southeastern McArthur Basin, it’s continuation into the Tomkinson Province, and the Lawn Hill Platform regions of Northern Territory and northwest Queensland. Chief aims of the project were to characterise, as much as possible, the inorganic geochemistry of units of the Paleoproterozoic Tawallah, McArthur, Fickling and McNamara Groups and the Mesoproterozoic Roper and South Nicholson groups, with most emphasis on the Tawallah, McNamara and Fickling Groups. Minimal attention was paid to units of the McArthur Group which have been extensively previously sampled. The project also involved exploratory geochemical characterisation of sedimentary and igneous rocks from Paleoproterozoic and Mesoproterozoic rocks of the Tomkinson Province (Tomkinson, Namerinni and Renner groups) in Northern Territory. Minimal regional geochemical data exists for these rocks which are considered time equivalents of the Tawallah, McArthur, Nathan and Roper groups. The approach followed was based on targeting as many units as possible from drill core held within the core repository facilities of the Northern Territory and Queensland Geological surveys. Sampling strategy for individual units was based on targeting all lithological variability with particular emphasis on units not previously extensively sampled. Units were sampled at moderate to high resolution, with sampling density ranging from one sample per ~10 m intervals in organic rich intervals or lithological variable units, up to one sample per 20 to 50 m intervals in lithologically-monotonous units or in units recently sampled recently by GA or others. This data release contains the results of elemental analyses (XRF, ICP-MS), ferrous iron oxide content (FeO) and Loss-on-ignition (LOI) on 805 samples selected from 42 drill cores housed in the Geological Survey of Northern Territory’s Darwin and Alice Springs core repositories and in the Geological Survey of Queensland’s Brisbane and Mount Isa core repositories. Drillholes sampled include the Amoco holes DDH 83-1, DDH 83-2, DDH 83-3, DDH 83-4, and DDH 83-5, as well as 14MCDDH001, 14MCDDH002, 87CIIDH1, 87CIIDH2, Bradley 1, Broughton 1, DD81CY1, DD91RC18, DD91DC1, DD91HC1, DD95GC001, GCD-1, GCD-2A, GSQ Lawn Hill 3, GSQ Lawn Hill 4, GSQ Westmoreland 2, MWSD05, ND1, ND2, 12BC001, and Willieray (1DD, 3DD, 8DD), Hunter (1DD, 2DD, 3DD) and HSD001, HSD002 holes from the Tomkinson Province. The data also include a small number of non-basin samples (from drill holes AAI POTALLAH CREEK 1, ADRIA DOWNS 1, Bradley 1, GSQ Normanton 1, GSQ Rutland Plains 1, MULDDH001 and MURD013), collected at the same time, largely for isotopic studies. The resultant geochemical data was largely generated at the Inorganic Geochemistry Laboratory at Geoscience Australia (509 of the 805 analyses), with two batches (296 samples) analysed by Bureau Veritas in Perth. Eighteen samples analysed at GA were also reanalysed at Bureau Veritas for QA/QC purposes. All data was collected as part of the Exploring for the Future program. The report also includes a statistical treatment of the geochemical data looking at laboratory performance, based on certified reference material (CRMs) and sample duplicates, and interlaboratory agreement, based on samples analysed at both laboratories. Results show accuracies were within acceptable tolerances (±2 SD) for the majority of major and trace elements analysed at both laboratories. Notable exceptions included significant negative bias for Fe2O3 and positive bias for Na2O at Geoscience Australia. The results also showed that Mo (and As and Be) measurements were a consistent problem at GA, and Zn a consistent problem at BV. Precision (reproducibility) for major elements at both laboratories was very good, generally between 1 to 5%. Precisions for trace elements, varied from generally 5% or better at Geoscience Australia, and mostly between 5 and 10% for Bureau Veritas. Importantly, agreement between laboratories was good, with the majority of elements falling within ±5% agreement, and a few within 5-10% (Th, Tb, Sr, Zn, Ta, and Cr). Major exceptions to this included Na2O, K2O, Rb, Ba and Cs, as well as P2O5 and SO3, as well as those trace elements commonly present in low concentrations (e.g., Cu, As, Be, Mo, Sb, Ge, Bi). The mismatch between the alkalis is notable and of concern, with differences (based on median values) of 17% and 22% for K2O and Ba (higher at Bureau Veritas) and 32% and 300% for Ba and Na2O (higher at Geoscience Australia). The geochemical data presented here have formed the basis for ongoing studies into aspects of basin-hosted mineral systems in the McArthur–Mount Isa region, including insights into sources of metals for such deposits and delineating alteration haloes around those deposits (Champion et al., 2020a, b).

  • This Record presents new U–Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from 43 samples of predominantly igneous rocks collected from the East Riverina region of the central Lachlan Orogen, New South Wales. The results presented herein correspond to the reporting period July 2016–June 2020. This work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework agreement, to better understand the geological evolution and mineral prospectivity of the central Lachlan Orogen in southern NSW (Bodorkos et al., 2013; 2015; 2016, 2018; Waltenberg et al., 2019).

  • Well and seismic correlation schemes exist for the Western Australian and South Australian parts of the Officer Basin but there are inconsistencies between the western and eastern regions. Hence, as part of the Exploring for the Future Officer-Musgrave Project, a chemostratigraphic correlation has been determined for the sedimentary fill of the Officer Basin with emphasis on Neoproterozoic to Cambrian rocks. The correlations have been developed on whole rock inorganic geochemical data obtained from the analysis of 10 study wells which span the basin from Western Australia and into South Australia. A total of 8 chemostratigraphic mega-sequences (MS) are recognised across the basin, that in turn are subdivided into a total of 24 chemostratigraphic sequences. MS1 to MS6 include the Neoproterozoic to Cambrian sedimentary rocks and are the focus of this study. The Neoproterozoic–Cambrian mega-sequences MS1 to MS4 broadly correspond to the previously defined Centralian supersequences CS1 to CS4 and provide robust well-control to the regional seismic correlations. Confidence in the correlation of these old rocks are important since they contain both potential source and reservoir rocks for petroleum generation and accumulation. MS7 is equivalent to the Permian Paterson Formation, while MS8 is equivalent to the Mesozoic section. The elemental data has also been used to elucidate aspects of the petroleum system by characterising reservoirs and identifying fine-grained siliciclastics deposited in anoxic environments which may have source potential. This work is expected to further improve geological knowledge and reduce the energy exploration risk of the Officer Basin, a key focus of this program. <b>Citation:</b> Edwards D.S., Munday S., Wang L., Riley D. & Khider K., 2022. Neoproterozoic and Cambrian chemostratigraphic mega-sequences of the Officer Basin; a regional framework to assist petroleum and mineral exploration. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146285

  • Small-angle neutron scattering (SANS) measurements were performed on 32 rock samples from the southern Georgina Basin, central Australia to assess nanopore anisotropy. Anisotropy can only be determined from oriented core material, hence the samples were cut perpendicular to bedding in cores selected from three wells that intersect the base of the hydrocarbon-bearing, organic-rich middle Cambrian Arthur Creek Formation; the latter is the source rock for both unconventional and conventional plays in the basin. The evolution of anisotropy of two-dimensional SANS intensity profiles with depth (for pore diameters ranging from 10 nm to 100 nm) was quantified and correlated with SANS intensity and total organic carbon (TOC) content. Our results confirm hydrocarbon generation at the base of the Arthur Creek Formation. The nanopore anisotropy in the basal Arthur Creek Formation at the well locations CKAD0001 (oil generation window) and MacIntyre 1 (late oil generation window) varies roughly according to normal compaction. When the Arthur Creek Formation is in the gas window, as sampled at Baldwin 1, there is a strong (negative) correlation between the average vertical-to-horizontal pore shape anisotropy and SANS intensity. The results indicate that unconventional gas production from organic-rich regions of over mature shale may be adversely affected by abnormal pore compaction.

  • Weathering intensity or the degree of weathering is an important characteristic of the earth’s surface that has a significant influence on the chemical and physical properties of surface materials. Weathering intensity largely controls the degree to which primary minerals are altered to secondary components including clay minerals and oxides. The degree of surface weathering is particularly important in Australia where variations in weathering intensity correspond to the nature and distribution of regolith (weathered bedrock and sediments) which mantles approximately 90% of the Australian continent. The weathering intensity prediction has been generated using the Random Forest decision tree machine learning algorithm. The algorithm is used to establish predictive relationships between field estimates of the degree of weathering and a comprehensive suite of covariate or predictive datasets. The covariates used to generate the model include satellite imagery, terrain attributes, airborne radiometric imagery and mapped geology. Correlations between the training dataset and the covariates were explored through the generation of 300 random tree models. An r-squared correlation of 0.85 is reported using 5 K-fold cross-validation. The mean of the 300 models is used for predicting the weathering intensity and the uncertainty in the weathering intensity is estimated at each location via the standard deviation in the 300 model values. The predictive weathering intensity model is an estimate of the degree of surface weathering only. The interpretation of the weathering intensity is different for in-situ or residual landscapes compared with transported materials within depositional landscapes. In residual landscapes, weathering process are operating locally whereas in depositional landscapes the model is reflecting the degree of weathering either prior to erosion and subsequent deposition, or weathering of sediments after being deposited. The weathering intensity model has broad utility in assisting mineral exploration in variably weathered geochemical landscapes across the Australian continent, mapping chemical and physical attributes of soils in agricultural landscapes and in understanding the nature and distribution of weathering processes occurring within the upper regolith.

  • As part of the Onshore Energy Systems Group’s program, organic maturation levels were determined using polar compounds from potential source rocks from the Georgina and Canning basins. The Early Paleozoic organic matter is devoid of the vitrinite maceral so unsuitable of the measurement of the industry-standard vitrinite reflectance (Ro%) measurement.

  • This report presents the results of an elemental and carbon and oxygen isotope chemostratigraphy study on three historic wells; Kidson-1, Willara-1 and Samphire Marsh-1, from the southern Canning Basin, Western Australia. The objective of this study was to correlate the Early to Middle Ordovician sections of the three wells to each other and to wells with existing elemental and carbonate carbon isotope chemostratigraphy data from the Broome Platform, Kidson and Willara sub-basins, and the recently drilled and fully cored stratigraphic Waukarlycarly 1 well from the Waukarlycarly Embayment.

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents inorganic geochemical analyses undertaken by Geoscience Australia on selected rock samples, collected at roughly 4 m intervals.

  • Soil geochemistry has been used to discover many mineral deposits in Australia. Further, it places first-order controls on soil fertility in agriculture and can be used to monitor the environment. With this utility in mind, an extensive soil sampling survey was undertaken as part of the Exploring for the Future program across the vast prospective exploration frontier between Tennant Creek and Mount Isa, dubbed the Northern Australia Geochemical Survey (NAGS). In all, 776 stream sediment outlet samples were collected at a depth of 0–10 cm, improving the density of the National Geochemical Survey of Australia by an order of magnitude, to one sample per ~500 km2. Two size fractions from each sample were analysed for a comprehensive suite of chemical elements after total digestion, Mobile Metal Ion™ (MMI) and aqua regia extractions, and fire assay. Here, we highlight the applicability of these results to base metal exploration, evaluation of soil fertility for agriculture and establishment of geochemical baselines. Our results reveal an association between elevated concentrations of commodity or pathfinder elements in the same or downstream catchments as known mineral deposits. Similar features elsewhere suggest new areas with potential for base metal discovery. <b>Citation:</b> Bastrakov, E.N. and Main, P.T., 2020. Northern Australia Geochemical Survey: a review of regional soil geochemical patterns. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.