From 1 - 7 / 7
  • <div>In July 2022 an airborne electromagnetic (AEM) survey was flown over and around the proposed site of the National Radioactive Waste Management Facility near the township of Kimba in South Australia.&nbsp;The survey was commissioned by the Australian Radioactive Waste Agency, and was project managed by Geoscience Australia. The survey has Geoscience Australia airborne survey project number P5008.</div><div><br></div><div>The survey was flown by Skytem Australia Pty Ltd using its SkyTEM312Fast AEM system.&nbsp;The survey was conducted on east-west lines at 500 m spacing, with a smaller central focus area of 100 m spaced lines, acquiring a total of 2,545 line kilometres of data. Skytem Australia Pty Ltd also processed the data.</div><div><br></div><div>This data package includes the acquisition and processing report, the final processed AEM data and the results of the 1D laterally constrained inversion of the data to conductivity-depth estimates that was carried out by the contractor.</div>

  • <div>In June to September 2022 an airborne electromagnetic (AEM) survey was flown over parts of the Curnamona Province, Delamerian Orogen and Darling Region in South Australia, New South Wales and Victoria.&nbsp;Geoscience Australia commissioned the survey in collaboration with the Department of Regional New South Wales as part of the Australian Government’s Exploring for the Future program. A total of 14,509 line kilometres of new data were acquired, of which 3,407 line kilometres were funded by the Department of Regional New South Wales. GA managed all aspects of the acquisition, quality control and processing of the AEM data.</div><div><br></div><div>The survey was flown by Skytem Australia Pty Ltd using its SkyTEM312Fast AEM system. The survey was conducted on east-west lines spaced at 2,500 m and 5,000 m apart.&nbsp;Skytem Australia Pty Ltd also processed the data. This data package includes the acquisition and processing report, the final processed AEM data and the results of the 1D laterally constrained inversion of the data to conductivity-depth estimates that was carried out by the contractor. The data package additionally contains the results and derived products from a 1D inversion carried out by Geoscience Australia with its own inversion software.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>

  • This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • We present a 3‐D inversion of magnetotelluric data acquired along a 340‐km transect in Central Australia. The results are interpreted with a coincident deep crustal seismic reflection survey and magnetic inversion. The profile crosses three Paleoproterozoic to Mesoproterozoic basement provinces, the Davenport, Aileron, and Warumpi Provinces, which are overlain by remnants of the Neoproterozoic to Cambrian Centralian Surperbasin, the Georgina and Amadeus Basins, and the Irindina Province. The inversion shows conductors near the base of the Irindina Province that connect to moderately conductive pathways from 50‐km depth and to off‐profile conductors at shallower depths. The shallow conductors may reflect anisotropic resistivity and are interpreted as sulfide minerals in fractures and faults near the base of the Irindina Province. Beneath the Amadeus Basin, and in the Aileron Province, there are two conductors associated strong magnetic susceptibilities from inversions, suggesting they are caused by magnetic, conductive minerals such as magnetite or pyrrhotite. Beneath the Davenport Province, the inversion images a conductive layer from ∼15‐ to 40‐km depth that is associated with elevated magnetic susceptibility and high seismic reflectivity. The margins between the different basement provinces from previous seismic interpretations are evident in the resistivity model. The positioning and geometry of the southern margin of the crustal conductor beneath the Davenport Province supports the positioning of the south dipping Atuckera Fault as interpreted on the seismic data. Likewise, the interpreted north dipping margin between the Warumpi and Aileron Province is imaged as a transition from resistive to conductive crust, with a steeply north dipping geometry.

  • The NSW component of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), is a collaboration between Geoscience Australia and the Geological Survey of New South Wales which commenced in 2016. Long-period MT data have been recorded at a 55-km spacing in a rolling deployment which to date has completed 224 of a planned 320 sites in NSW. This article summarises the progress of the AusLAMP NSW program and highlights how it is contributing to our understanding of the tectonic architecture in NSW.

  • This animation shows how Airborne Electromagnetic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animations include a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • This animation shows how Magnetotelluric (MT) Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what magnetotelluric (MT) stations and equipment looks like what the equipment measures and how the survey works.